
Revealing the Performance of MPI RMA
Implementations

William D. Gropp and Rajeev Thakur

Mathematics and Computer Science Division
Argonne National Laboratory

Argonne, IL 60439, USA
{gropp, thakur}@mcs.anl.gov

Abstract. The MPI remote-memory access (RMA) operations provide
a different programming model from the regular MPI-1 point-to-point
operations. This model is particularly appropriate for cases where there
are multiple communication events for each synchronization and where
the target memory locations are known by the source processes. In this
paper, we describe a benchmark designed to illustrate the performance of
RMA with multiple RMA operations for each synchronization, as com-
pared with point-to-point communication. We measured the performance
of this benchmark on several platforms (SGI Altix, Sun Fire, IBM SMP,
Linux cluster) and MPI implementations (SGI, Sun, IBM, MPICH2,
Open MPI). We also investigated the effectiveness of the various op-
timization options specified by the MPI standard. Our results show that
MPI RMA can provide substantially higher performance than point-to-
point communication on some platforms, such as SGI Altix and Sun Fire.
The results also show that many opportunities still exist for performance
improvements in the implementation of MPI RMA.

1 Introduction

MPI-2 added remote-memory access (RMA) operations to the MPI standard.
These one-sided operations offer the promise of improved performance for appli-
cations, yet users are uncertain whether these operations offer any advantage in
most implementations.

A key feature of the one-sided operations is that data transfer and synchro-
nization are separated. This allows multiple transfers to use a single synchroniza-
tion operation, thus reducing the total overhead. RMA differs from the two-sided
or point-to-point model, where each message combines both the transfer and the
synchronization. Because of this feature, a performance benefit is most likely to
be observed when there are multiple, relatively short data transfers for each
communication step in an application.

In this paper, we present a benchmark designed to test such a commu-
nication pattern. The benchmark is based on the common “halo exchange”
(or ghost-cell exchange) operation in applications that approximate the solu-
tion to partial differential equations. We compare a number of implementa-
tions of this benchmark with all three MPI RMA synchronization mechanisms:

MPI Win fence, the scalable synchronization (post/start/complete/wait), and
passive target (MPI Win lock/unlock). For each of these mechanisms, MPI de-
fines various parameters (assert options) that may be used by the programmer
to help the MPI implementation optimize the operation. In addition, careful
implementation can further improve performance [8].

Related Work. A number of papers have explored the performance of MPI RMA.
The results in [4] focused on bandwidth for large messages and active-target
synchronization in a variant of the ping-pong benchmark, though Table 1 there
presents times for a single 4-byte message. The SKaMPI benchmark now sup-
ports tests of the MPI one-sided routines [1] and mentions a test similar to our
halo test, but without considering varying numbers of neighbors or providing
results. The MPI Benchmark Program Library [10] was developed to test the
performance of MPI on the Earth Simulator and showed that MPI RMA was
faster than the point-to-point operations on that system.

Evaluating the performance of MPI RMA requires careful attention to the
semantics of the MPI RMA routines. The broadcast algorithms used in Appendix
B and C of [6], for example, rely on MPI Get being a blocking function, which it
need not be. In implementations that take advantage of the nonblocking nature
of MPI Get allowed by the MPI Standard (for example, MPICH2 [8]), the code
in Appendix B and C of [6] will indeed go into an infinite loop.

Papers that discuss the implementation of MPI RMA naturally include per-
formance measurements; for example, see [2, 9]. The test we use in this paper
is similar to Wallcraft’s halo benchmark [11], but that benchmark does not use
MPI one-sided communication and uses only four neighbors in the halo exchange.
Wallcraft’s halo benchmark has also been used in comparing MPI with other
programming models [3].

2 The Benchmark

Our benchmark exchanges data with a selected number of partner processes. It
mimics a halo, or ghost-cell, exchange that is a common component of parallel
codes that solve partial differential equations. The code for this pattern, using
MPI point-to-point communication, is as follows:

for (j=0; j<n_partners; j++) {
MPI_Irecv(rbuffer[j], len, MPI_BYTE, partners[j], 0,

MPI_COMM_WORLD, &req[j]);
MPI_Isend(sbuffer[j], len, MPI_BYTE, partners[j], 0,

MPI_COMM_WORLD, &req[n_partners+j]);
}
MPI_Waitall(2*n_partners, req, MPI_STATUSES_IGNORE);

In the case of two partners, the neighbor processes are the processes with ranks
one greater and one less than the rank of the process. In the case of four partners,

the neighbor processes mimic a two-dimensional decomposition. In the case of
eight partners, the eight neighbors in a two-dimensional decomposition are used.

This test is chosen because it allows us to separate the data transfers (in the
RMA case, the MPI Put and MPI Get calls) from the synchronization (e.g., the
MPI Win fence call). It also better reflects the communication in many simula-
tion applications than does the standard ping-pong test.

Each of the MPI RMA methods allows different options for optimization. For
example, there are various “assert” options for MPI Win fence. Our test allows
the selection of the following options.

Fence. This is active-target synchronization with MPI Win fence.
1. Allocate send and receive buffers with MPI Alloc mem.
2. Specify “no locks” in MPI Win create.
3. Provide assert option MPI MODE NOPRECEDE on MPI Win fence before

RMA calls and all of MPI MODE NOSTORE, MPI MODE NOPUT, and
MPI MODE NOSUCCEED on the MPI Win fence after the RMA calls.

Post/Start/Complete/Wait. This is scalable active-target synchronization
with MPI Win post, MPI Win start, MPI Win complete, and MPI Win wait.
1. Allocate send and receive buffers with MPI Alloc mem.
2. Specify “no locks” in MPI Win create.

Passive. This is passive-target synchronization with MPI Win lock and
MPI Win unlock.
1. Use locktype MPI LOCK SHARED (instead of MPI LOCK EXCLUSIVE).
2. Do not use a separate MPI Barrier for the target processes to know that

all RMA operations have completed. This is relevant for applications that
may have an algorithmic reason for knowing that RMA operations are
complete, such as a required MPI Allreduce.

Since an implementation may require that only memory allocated with
MPI Alloc mem be used for passive-target RMA, we do not attempt to use
the passive-target mode without allocating memory in this way.

The testing methodology is the same as that used in mpptest and was de-
scribed in [5]. It uses the minimum of an average time, where the time of an
individual test (containing multiple iterations of the basic communication test)
is large relative to the granularity and precision of the clock. Since the tests are
implemented within the mpptest code, all of the many options for controlling
message sizes and measurement details are available. The tests are available as
part of the current distribution of mpptest, available at [7]. A script, runhalo,
is provided that runs the tests with the various RMA optimization options.

To better understand the tests, we also measured the halo exchange as imple-
mented with MPI Isend, MPI Irecv, and MPI Waitall (as in the example code)
and with persistent sends and receives. In addition, since MPI Win fence can
be implemented with MPI Barrier on cache-coherent SMPs where immediate
direct-memory copy is used for the MPI RMA operations, we also measured the
performance of MPI Barrier.

3 Results

We ran our tests on a variety of platforms and with a variety of MPI implementa-
tions. Results for the native (vendor-supplied) implementations are provided for
SGI Altix, Sun Fire, and IBM p655+ SMPs. We also include results for MPICH2
version 1.0.5 and Open MPI 1.2.0 on a Linux cluster.

The results of testing the performance-optimization features showed that only
a few optimizations are exploited by the implementations we tested. Table 1
summarizes which optimization approaches provided a significant, measurable
benefit in our tests. In the discussion of each platform, the results with the best
choice of options are used.

Table 1. Optimizations that were observed to help in the halo tests. An “X” appears
in the “All” row only if using multiple optimizations provides an improvement over a
single optimization. “NA” means that the MPI implementation does not support that
feature. No options provided a benefit on the IBM p655+.

Option SGI Altix SUN Fire IBM p655+ MPICH2 Open MPI

AllocMem w Fence X
Nolocks w Fence
Asserts w Fence X X

All w Fence

AllocMem w PSCW NA X
Nolocks w PSCW NA

All w PSCW NA

Shared locks X X

The rest of this section describes the performance of the different RMA syn-
chronization modes using the best set of optimization values. In the interests
of space, we provide graphs for only a subset of our results, summarizing the
measurements in the text.

3.1 SGI Altix

We ran our tests on three different SGI Altix SMP systems that are part of the
Columbia supercomputer at the NASA Ames Research Center. These were the
single-core SGI Altix 3700 and Altix 3700 Bx2 and the dual-core Altix 4700; the
results in this paper are from the Altix 3700 Bx2. SGI’s MPI implementation
does not support the post/start/complete/wait method of synchronization, only
fence and lock-unlock.

Figure 1 shows that the Altix has excellent RMA performance. Lock-put-
unlock without an additional barrier performs significantly better than any other
form of communication. For the 8-neighbors case, it is ten times faster than send-
receive. Even the fence method for 8 neighbors (put-8) is more than twice as fast
as send-receive.

Fig. 1. Performance of halo exchange on SGI Altix with 16 processes. The best RMA
results are compared with point-to-point; the legend indicates the number of neighbors
(e.g., put-4 is put/fence with four neighbors, psendrecv-8 is persistent send/receive
with eight neighbors, and nb stands for no barrier).

A surprising aspect of the Altix results is that the RMA optimization features
in the MPI calls (e.g., the assert values in MPI Win fence) have no measurable
effect, nor does using memory allocated with MPI Alloc mem (for fence). While
this is attractive for the user (nothing to do), a closer look at all the data we
collected suggests that additional optimizations could help in some cases. For
example, in the two-neighbor case, put-fence was slower than send-recv by 50%.
But since lock-unlock was significantly faster, a tuned version of fence that takes
advantage of user-provided asserts should also be able to outperform send-recv.

3.2 Sun Fire

We ran our tests on the Sun Fire SMP cluster at the RWTH Aachen University
using Sun’s MPI. The specific machine we ran on was a Sun Fire E2900 with eight
dual-core UltraSPARC IV 1.2 GHz CPUs. Figure 2 shows a subset of the results.
As on the Altix, the performance of lock-unlock without an additional barrier
is the best of all communication methods—it is twice as fast as send-receive.
The performance of MPI RMA on this system is quite good if the memory used
is allocated with MPI Alloc mem. The other optimization options had little or
no effect on the performance of the halo tests. In particular, the MPI Win fence
options had no effect. One unusual feature of this implementation is the extraor-
dinarily long time required by MPI Alloc mem and MPI Win create. Times of

several seconds were measured; we rarely saw these routines take less than a few
seconds when using 16 processes.1

Fig. 2. Performance of 8-neighbor halo exchange on Sun Fire SMP with 16 processes in
MPI COMM WORLD. putpscwalloc is the scalable synchronization with MPI Alloc mem. put-
lockshared is passive target with shared locks, and putlocksharednb omits the barrier
that is necessary to ensure completion at the target.

3.3 IBM p655+

We ran our tests on the DataStar machine at the San Diego Supercomputer
Center with IBM’s MPI. The specific node we ran on was an IBM p655+ 8-
way SMP. The p655+ has 1.7 GHz POWER4+ CPUs. Nodes in DataStar are
connected with the Federation Switch; however, as our tests used a single node,
the switch was not used.

With eight processes on an eight-node SMP, the RMA performance was very
poor, on the order of forty times slower than the point-to-point performance.
With seven processes on the same eight-node SMP, the RMA performance was
still poor but an order of magnitude faster than with eight processes. This case
is shown in Figure 3. The significant change in performance between eight and
seven processes suggests that a thread is used for implementing the RMA op-
erations and that the implementation is not prepared to handle the case where
there are more threads than processors. To test this hypothesis, we also ran with
four MPI processes on an eight-processor system. The performance in that case
1 We were told that the performance problem with MPI Alloc mem has been fixed in

Sun’s ClusterTools 7; the version on the machine was ClusterTools 5.

was further improved over the seven-process case but was still poor relative to
the point-to-point version. An MPI Barrier on this system takes roughly 9 µsec
on 8 processes, so the cost of a barrier or barrier-like synchronization is not a
major contributor to the high cost of RMA on this system.

Fig. 3. Performance of RMA on IBM p655+. The chart to the left is with 7 processes
on an 8-node SMP; to the right is 4 processes on an 8-node SMP. Results for two and
four neighbors are shown using the two active target synchronization methods (put and
putpscw in the legend) and point to point with nonblocking and persistent send/receive
(sendrecv and psendrecv in the legend, respectively).

3.4 Linux Cluster

We also ran the tests on the Jazz cluster at Argonne, which has 2.4 GHz Pentium
Xeon nodes and both a Myrinet 2000 and 100 Mb/s Ethernet interconnect. We
used two MPI implementations, MPICH2 1.0.5 and Open MPI 1.2.0. The cluster
uses an older version of the native GM library for Myrinet, and we could not
build Open MPI for that version. Hence we used TCP over Myrinet for commu-
nication with both MPICH2 and Open MPI. As the results in Figure 4 show,
the best performance was achieved with the point-to-point operations for both
implementations. The reason is that in the absence of hardware and software sup-
port for RMA from the network-transport layer, the MPI RMA operations are
simply implemented on top of lower-level point-to-point operations. Nonetheless,
RMA with MPICH2 performs significantly better than with Open MPI. Some
of this performance improvement is due to the optimizations in MPICH2 that
minimize the synchronization overhead associated with MPI RMA [8].

Fig. 4. Performance of 8-neighbor halo exchange with 16 processes on the Linux cluster
by using Open MPI (left) and MPICH2 (right).

4 Conclusions

We have shown that implementations of MPI RMA can provide a performance
advantage on systems with hardware support for remote-memory operations,
particularly when there are multiple RMA operations per synchronization oper-
ation. The SGI Altix and Sun Fire provided surprisingly good performance for
the passive-target RMA operations; in fact, the performance was so good that it
may be possible to improve the performance of the active-target RMA methods
by making use of the approach used for the passive-target RMA.

We measured surprisingly poor performance on an IBM SMP. We suspect
that the implementation is not optimized for MPI RMA operations and relies
on separate threads that may be running in a polling mode, thus leading to very
poor performance when there are fewer processors than at least two times the
number of MPI processes.

Few of the flags provided by the MPI standard are exploited by the im-
plementations. This situation was reflected in the surprisingly high overhead
for active-target RMA operations on most of the platforms. We hope that our
benchmark will encourage MPI implementors to exploit these features.

Acknowledgments

We thank the RWTH Aachen University, NASA Ames, and the San Diego Su-
percomputer Center for providing computing time on their systems. We partic-
ularly thank Subhash Saini and Dale Talcott for running the tests on the Altix
machines and Anthony Chan for running the tests on the Linux cluster.

This work was supported by the Mathematical, Information, and Computa-
tional Sciences Division subprogram of the Office of Advanced Scientific Com-
puting Research, Office of Science, U.S. Department of Energy, under Contract
DE-AC02-06CH11357.

References

1. Werner Augustin, Marc-Oliver Straub, and Thomas Worsch. Benchmarking one-
sided communication with SKaMPI 5. In Beniamino Di Martino, Dieter Kran-
zlmüller, and Jack Dongarra, editors, PVM/MPI, volume 3666 of Lecture Notes in
Computer Science, pages 301–308. Springer, 2005.

2. S. Booth and E. Mourão. Single sided MPI implementations for SUN MPI. In Pro-
ceedings of Supercomputing’2000 (CD-ROM), Dallas, TX, November 2000. IEEE
and ACM SIGARCH. EPCC, The University of Edinburgh.

3. Co-Array Fortran vs MPI. http://www.co-array.org/cafvsmpi.htm.
4. Edgar Gabriel, Graham E. Fagg, and Jack Dongarra. Evaluating the performance

of MPI-2 dynamic communicators and one-sided communication. In Jack Don-
garra, Domenico Laforenza, and Salvatore Orlando, editors, PVM/MPI, volume
2840 of Lecture Notes in Computer Science, pages 88–97. Springer, 2003.

5. William D. Gropp and Ewing Lusk. Reproducible measurements of MPI per-
formance characteristics. In Jack Dongarra, Emilio Luque, and Tomàs Margalef,
editors, Recent Advances in Parallel Virtual Machine and Message Passing Inter-
face, volume 1697 of Lecture Notes in Computer Science, pages 11–18. Springer
Verlag, 1999.

6. Glenn R. Luecke, Silvia Spanoyannis, and Marina Kraeva. The performance
and scalability of SHMEM and MPI-2 one-sided routines on a SGI Origin 2000
and a Cray T3E-600. Concurrency and Computation: Practice and Experience,
16(10):1037–1060, 2004.

7. MPPTEST - Measuring MPI Performance. http://www.mcs.anl.gov/mpi/mpptest.
8. Rajeev Thakur, William Gropp, and Brian Toonen. Optimizing the synchroniza-

tion operations in MPI one-sided communication. International Journal of High-
Performance Computing Applications, 19(2):119–128, Summer 2005.

9. Jesper Larsson Träff, Hubert Ritzdorf, and Rolf Hempel. The implementation of
MPI-2 one-sided communication for the NEC SX-5. In Proceedings of Supercom-
puting’2000 (CD-ROM), Dallas, TX, November 2000. IEEE and ACM SIGARCH.
NEC Europe Ltd.

10. Hitoshi Uehara, Masanori Tamura, and Mitsuo Yokokawa. An MPI benchmark
program library and its application to the Earth Simulator. In ISHPC ’02: Pro-
ceedings of the 4th International Symposium on High Performance Computing,
pages 219–230, London, UK, 2002. Springer-Verlag.

11. Alan J. Wallcraft. SPMD OpenMP versus MPI for ocean models. Concurrency:
Practice and Experience, 12(12):1155–1164, 2000.

